手机浏览器扫描二维码访问
埃斯皮诺萨在纸上写出1和π,然后说:你们看,它们有什么不同?有理数和无理数是吧!其实也对,不过不是我想要表达的内容。为了让你们明白我所说的,我要先提一下进制。说起进制,大家可能有点陌生。如果说二进制、十进制、十六进制和六十进制呢,你们就应该很熟悉。我们一般使用的是十进制,而它就是进制的一种。我要说的是进制内的数和进制外的数,1和π就分别属于它们。我知道大家有些困惑,我就来讲解一下。它们是怎么区分的呢?其实就是在条件理想的情况是否可以写出来。换句话说,就是是否无限。如果有限,就是进制内的数。如果不是,就是进制外的数。为什么会如此呢?我觉得无限就是进制的问题,换个进制也许就不是无限了。所以,才有这两种数。你们认为我的观点正确吗?
小尼拿起纸,反复看个不停。口中念念有词,眼睛扑闪扑闪。良久,他说道:我们都知道0.9的循环等于1。而按照你的说法它们分别就是进制内的数和进制外的数,这两种数怎么能相等呢?1怎么会既是无限的又是有限的呢?我觉得你的观点不正确。
艾丽西亚说:有点太武断了。我计算过了在九进制里13等于0.33,不是无限循环小数。所以,这就足以说明无限循环小数是由于进制而产生的。至于π,我就不清楚了。可能变换一下进制,就不是无理数了。所以,这个问题还不能下定论。不过,我对埃斯皮诺萨有信心。我觉得无理数就是进制外的数。
回到小尼的问题上,进制内的数和进制外的数可能相等吗?其实它们都是基于一个进制而言的。在一个进制里,进制内的数是多数而进制外的数是少数。虽然它是进制外的数,但是还是这个进制里的数。这是什么意思呢?就是它们的这种进制外的特征会在某些时候消失,也就是会变成进制内的数。所以,进制外的数也可以看做是这个进制的数。举个例子,0.3的循环是进制外的数,但是它的三倍又会变成进制内的数。也就是有限的一。我觉得π的平方一定是有限数。为什么不是有理数呢?其实,有理数包含有限数和无限循环小数,有限数就是有限的。对于这种现象,我叫做进制外的数回归。进制外的数回归充分说明数系的规律性,进制对数的强大约束力。
小尼又说:我觉得π的平方会是无限循环小数,而不是有限数。所以,进制外的数回归在无理数上根本不会发生。不过,我也认同无限循环小数是由进制产生的这种说法。
不过,我又突然觉得π的平方还是无理数。你们觉得呢?
埃斯皮诺萨斩金截铁地说:我觉得π的平方是不会是无理数,也可能不是无限循环小数。其实,我们也只是猜测而已。无理数的研究还要依靠科学家,而我们只有慢慢等待结果了。
数果然很奇妙,可以让人进行无限的遐想。
对了,我要去想新的话题了。你们自便吧!
魔王大人竟是我林立 山里来的小帅医 魏紫风澹渊 谢瑶楚寒 傲娇王爷宠不停魏紫风澹渊 武炼虚空 逆袭天师 墨北枭苏小鱼 王牌团宠:小娇妻又被扒马甲了 我在异界当兽医 桃源小巫医 皇神纪 掌上倾华 开局中奖一亿,我成了资本大佬 最强小前锋 苏辰唐依晨 魔兽之亡灵召唤 贞观憨婿 这个主角明明很强却异常谨慎 大明:我重生成了朱允炆
从农村考入大学的庾明毕业后因为成了老厂长的乘龙快婿,后随老厂长进京,成为中央某部后备干部,并被下派到蓟原市任市长。然而,官运亨通的他因为妻子的奸情发生了婚变,蓟原市急欲接班当权的少壮派势力以为他没有了后台,便扯住其年轻恋爱时与恋人的越轨行为作文章,将其赶下台,多亏老省长爱惜人才,推荐其参加跨国合资公司总裁竞聘,才东山再起然而,仕途一旦顺风,官运一发不可收拾由于庾明联合地方政府开展棚户区改造工程受到了中央领导和老百姓的赞誉。在省代会上,他又被推举到了省长的重要岗位。一介平民跃升为省长...
...
我是空间的旅人,时间的行者我追逐真理,寻觅起源我行走诸天,求真万界我是传道者,亦是冒险家。另外,我真的很凶,超凶(看封面)!声明1本书尽量走合理认知世界的路线,有自己的观点设定,不喜勿扰!声明2本书中的内容并不真科学,并不全合理,因为没有实际基础,纯属作者菌的蘑菇想法,作者也写不出全无bug的小说。...
一个失业失恋的落魄男子,遇上一个奇怪的老人,加上一个奇怪的项链之后,金钱,美女,似乎全都是从天而降,而事情却又没有这么简单,这一切,需要有魂灵去修炼!...
什么?要我和美女总裁搞好关系?当然可以!李迪贱笑一声关系就是搞出来的嘛!当兵王之王重回花都,冷艳总裁,傲娇萝莉,清纯助理,火辣警花,群美环绕!花都,我为王!...
小医生蒋飞,正因为诊所生意太差而考虑关门大吉时,却意外被游戏人物附身,从此变得无所不能。不仅医术出神入化,生死人肉白骨,从阎王爷手中抢命就连厨艺琴艺园艺宠物驯养都全部精通!当别人以为这就是蒋飞全部本事时,蒋飞却笑眯眯地将目光看向了那一本本武学秘籍降龙十八掌六脉神剑北冥神功独孤九剑...